Calculate running totals within groups. In Excel: nightmare. In Python: one line.

🔄 Groupby + Transform: The Excel Killer Feature

PANDAUDIT Team
3 min read

The Problem: Running Totals per Group

You need cumulative amounts for each member. In Excel:

=SUMIFS($D:$D, $A:$A, $A2, $C:$C, "<="&$C2)

Problems:

  • 😫 Slow on 10,000+ rows
  • 💥 Breaks if rows reordered
  • 🐛 Hard to audit
  • 😵 Complex to understand

Python’s One-Liner

# Calculate cumulative amount within each member
df['cumulative'] = df.groupby('Member_ID')['Amount'].transform('cumsum')

That’s it. Done. 🎉


Real Example

import pandas as pd

# Sample data
data = {
    'Member_ID': ['A001', 'A001', 'A001', 'B002', 'B002', 'C003'],
    'Date': ['2025-01', '2025-02', '2025-03', '2025-01', '2025-02', '2025-01'],
    'Amount': [100, 150, 200, 300, 250, 500]
}

df = pd.DataFrame(data)

# Calculate cumulative sum per member
df['Cumulative'] = df.groupby('Member_ID')['Amount'].transform('cumsum')

# Calculate total per member (repeated on each row)
df['Member_Total'] = df.groupby('Member_ID')['Amount'].transform('sum')

# Calculate percentage of member's total
df['Pct_of_Total'] = (df['Amount'] / df['Member_Total'] * 100).round(1)

print(df)

Output:

  Member_ID    Date  Amount  Cumulative  Member_Total  Pct_of_Total
0      A001  2025-01     100         100           450          22.2
1      A001  2025-02     150         250           450          33.3
2      A001  2025-03     200         450           450          44.4
3      B002  2025-01     300         300           550          54.5
4      B002  2025-02     250         550           550          45.5
5      C003  2025-01     500         500           500         100.0

Beautiful! 🎨


Other Transform Operations

Rank Within Group

df['Rank'] = df.groupby('Member_ID')['Amount'].transform(
    lambda x: x.rank(method='dense', ascending=False)
)

Z-Score Normalization

df['Z_Score'] = df.groupby('Category')['Amount'].transform(
    lambda x: (x - x.mean()) / x.std()
)

Moving Average (3-period)

df['Moving_Avg'] = df.groupby('Account')['Amount'].transform(
    lambda x: x.rolling(3, min_periods=1).mean()
)

Count Occurrences

df['Occurrence_Num'] = df.groupby('Member_ID').cumcount() + 1

Performance Comparison

Rows Excel Formula Python Transform
1,000 2 sec <0.1 sec
10,000 30 sec 0.2 sec
100,000 Crashes 1 sec

100x faster!


Try It Yourself!

import pandas as pd

# Your data
df = pd.read_excel('data.xlsx')

# Running total per group
df['Cumulative'] = df.groupby('Group')['Amount'].transform('cumsum')

# Save
df.to_excel('data_with_cumulative.xlsx', index=False)

The Bottom Line

✅ One line replaces complex SUMIFS formulas
✅ 100x faster than Excel
✅ Works with any aggregation (sum, mean, rank, etc.)
✅ Doesn’t break when rows reorder

Mind = Blown 🤯


Part of the “From Excel Hell to Python Heaven” series.

Join the Discussion on Discord

Have questions about this post? Want to share your own Python automation stories? Join our growing community of finance and accounting professionals who are learning Python!

Discuss on Discord

💬 Get help with your code
🎯 Share your automation wins
🤝 Connect with peers in finance & accounting