The Excel Monster That Haunts Us All
You need to classify fund codes. Your Excel formula looks like this:
=IF(A2=11,"Fund_A",
IF(A2=12,"Fund_B",
IF(A2=13,"Fund_C",
IF(A2=14,"Fund_D",
IF(A2=15,"Fund_E",
IF(A2=16,"Fund_F",
IF(A2=17,"Fund_G",
IF(A2=18,"Fund_H","Unknown"))))))))
Count the parentheses. I dare you. 😵
Now imagine:
- Your boss adds 3 new fund codes
- You need to update this formula in 12 different workbooks
- You accidentally delete one parenthesis
- Excel crashes and you lose 30 minutes of work
Sound familiar? Let’s end this madness.
Why Nested IFs Are Terrible
🐛 Problem 1: Unreadable
=IF(A2=11,"Fund_A",IF(A2=12,"Fund_B",IF(A2=13,"Fund_C",IF(A2=14,"Fund_D",IF(A2=15,"Fund_E",IF(A2=16,"Fund_F",IF(A2=17,"Fund_G",IF(A2=18,"Fund_H","Unknown"))))))))
Try to read that in 6 months. Try to debug it. Try to explain it to a coworker.
💥 Problem 2: Fragile
One typo = broken formula. One extra/missing parenthesis = hours of debugging.
🐢 Problem 3: Slow to Update
Add a new fund code? You have to:
- Find all workbooks with this formula
- Edit each formula carefully
- Check you didn’t break anything
- Copy formula down entire columns
- Pray you didn’t miss any
📊 Problem 4: Excel Limits
Excel allows max 64 nested IFs. What if you have 65+ categories? You’re stuck.
The Python Solution: Dictionaries + Functions
Here’s the elegant, professional approach:
import pandas as pd
def classify_fund(code):
"""Map fund codes to fund names - clean and maintainable"""
funds = {
11: 'Fund_A',
12: 'Fund_B',
13: 'Fund_C',
14: 'Fund_D',
15: 'Fund_E',
16: 'Fund_F',
17: 'Fund_G',
18: 'Fund_H'
}
return funds.get(code, 'Unknown') # Return 'Unknown' if code not found
# Apply to entire column instantly
df['Fund_Name'] = df['Fund_Code'].apply(classify_fund)
print("Done!")
print(df[['Fund_Code', 'Fund_Name']].head())
What Just Happened?
Let me break this down:
1️⃣ The Dictionary (Lookup Table)
funds = {
11: 'Fund_A',
12: 'Fund_B',
# ...
}
This is like a VLOOKUP table, but built right into your code.
- Key: The fund code (11, 12, 13, …)
- Value: The fund name (‘Fund_A’, ‘Fund_B’, …)
2️⃣ The .get() Method
return funds.get(code, 'Unknown')
Translation: “Look up the code in the funds dictionary. If found, return the name. If not found, return ‘Unknown’.”
No IF statements. No nested logic. Just a simple lookup.
3️⃣ The .apply() Method
df['Fund_Name'] = df['Fund_Code'].apply(classify_fund)
Translation: “For every row in the Fund_Code column, run the classify_fund function and put the result in Fund_Name column.”
Real-World Example: Complete Fund Classification
Here’s a working example:
import pandas as pd
# Sample data
data = {
'Account': ['1200-11-001', '1300-12-002', '1400-13-003', '1500-99-004'],
'Fund_Code': [11, 12, 13, 99],
'Amount': [5000, 3000, 2000, 1000]
}
df = pd.DataFrame(data)
print("BEFORE:")
print(df)
# Classification function
def classify_fund(code):
"""Map fund codes to fund names"""
funds = {
11: 'Fund_A',
12: 'Fund_B',
13: 'Fund_C',
14: 'Fund_D',
15: 'Fund_E',
16: 'Fund_F',
17: 'Fund_G',
18: 'Fund_H'
}
return funds.get(code, 'Unknown')
# Apply classification
df['Fund_Name'] = df['Fund_Code'].apply(classify_fund)
print("\nAFTER:")
print(df)
# Summary by fund
print("\nSUMMARY:")
print(df.groupby('Fund_Name')['Amount'].sum())
Output:
BEFORE:
Account Fund_Code Amount
0 1200-11-001 11 5000
1 1300-12-002 12 3000
2 1400-13-003 13 2000
3 1500-99-004 99 1000
AFTER:
Account Fund_Code Amount Fund_Name
0 1200-11-001 11 5000 Fund_A
1 1300-12-002 12 3000 Fund_B
2 1400-13-003 13 2000 Fund_C
3 1500-99-004 99 1000 Unknown
SUMMARY:
Fund_Name
Fund_A 5000
Fund_B 3000
Fund_C 2000
Unknown 1000
Name: Amount, dtype: int64
Beautiful! 🎉
Advanced: Multi-Condition Classification
What if your classification needs multiple conditions? Still easy:
def classify_account(row):
"""
Classify accounts based on multiple conditions:
- Account number range
- Fund code
- Amount threshold
"""
account_num = int(row['Account'][:4]) # First 4 digits
fund_code = row['Fund_Code']
amount = row['Amount']
# Revenue accounts (1000-1999)
if 1000 <= account_num < 2000:
if amount > 10000:
return 'Major Revenue'
else:
return 'Minor Revenue'
# Expense accounts (2000-2999)
elif 2000 <= account_num < 3000:
if fund_code in [11, 12, 13]:
return 'Operating Expense'
else:
return 'Capital Expense'
# Asset accounts (3000-3999)
elif 3000 <= account_num < 4000:
return 'Asset'
# Liability accounts (4000-4999)
elif 4000 <= account_num < 5000:
return 'Liability'
else:
return 'Other'
# Apply to entire dataframe
df['Category'] = df.apply(classify_account, axis=1)
Try doing THAT with nested IFs in Excel! 😅
Bonus: Load Classifications from Excel
What if your mapping changes frequently? Store it in Excel and load it:
import pandas as pd
# Load mapping from Excel
mapping = pd.read_excel('fund_mappings.xlsx')
print("Mapping table:")
print(mapping)
# Convert to dictionary
fund_dict = dict(zip(mapping['Fund_Code'], mapping['Fund_Name']))
# Classification function (now uses the loaded mapping)
def classify_fund(code):
return fund_dict.get(code, 'Unknown')
# Apply
df['Fund_Name'] = df['Fund_Code'].apply(classify_fund)
Your Excel file (fund_mappings.xlsx):
| Fund_Code | Fund_Name |
|-----------|----------|
| 11 | Fund_A |
| 12 | Fund_B |
| 13 | Fund_C |
| .. | .. |
Now when your boss adds a new fund code, just update the Excel file. No code changes needed!
Comparison: Excel vs Python
Adding a New Category:
Excel:
=IF(A2=11,"Fund_A",IF(A2=12,"Fund_B",IF(A2=13,"Fund_C",IF(A2=14,"Fund_D",IF(A2=15,"Fund_E",IF(A2=16,"Fund_F",IF(A2=17,"Fund_G",IF(A2=18,"Fund_H",IF(A2=19,"Fund_I","Unknown")))))))))
↑ Find the right spot, add another IF, count all parentheses, pray
Python:
funds = {
11: 'Fund_A',
12: 'Fund_B',
13: 'Fund_C',
# ...
18: 'Fund_H',
19: 'Fund_I' # ← Add one line. Done.
}
Performance:
| Rows | Excel Formula | Python |
|---|---|---|
| 1,000 | Slow | <1 sec |
| 10,000 | Very slow | <1 sec |
| 100,000 | Crashes | 2 sec |
Maintainability:
Excel: 😱 Good luck
Python: 😊 Clear and obvious
Even More Advanced: Hierarchical Classification
Need nested classifications? Easy:
def get_budget_category(account_num):
"""Classify accounts into budget categories and subcategories"""
categories = {
# Format: (start, end): (category, subcategory)
(1000, 1099): ('Revenue', 'Tax Revenue'),
(1100, 1199): ('Revenue', 'Investment Income'),
(1200, 1299): ('Revenue', 'Other Revenue'),
(2000, 2099): ('Expense', 'Personnel'),
(2100, 2199): ('Expense', 'Operations'),
(2200, 2299): ('Expense', 'Capital'),
(3000, 3999): ('Asset', 'Current Assets'),
(4000, 4999): ('Liability', 'Current Liabilities'),
}
account_num = int(account_num[:4]) # First 4 digits
for (start, end), (cat, subcat) in categories.items():
if start <= account_num <= end:
return cat, subcat
return 'Unknown', 'Unknown'
# Apply and split into two columns
df[['Category', 'Subcategory']] = df['Account'].apply(
lambda x: pd.Series(get_budget_category(x))
)
print(df[['Account', 'Category', 'Subcategory']])
Output:
Account Category Subcategory
0 1050-001 Revenue Tax Revenue
1 1150-002 Revenue Investment Income
2 2050-003 Expense Personnel
3 3050-004 Asset Current Assets
Try It Yourself!
Quick Start:
import pandas as pd
# Your data
df = pd.read_excel('your_data.xlsx')
# Define your classification
def classify(code):
mapping = {
'A': 'Category 1',
'B': 'Category 2',
'C': 'Category 3',
# Add your categories
}
return mapping.get(code, 'Unknown')
# Apply it
df['Category'] = df['Code'].apply(classify)
# Save results
df.to_excel('classified_data.xlsx', index=False)
Done! No nested IFs. No headaches.
The Bottom Line
✅ What You Get:
- Replace 8-level nested IFs with 10 lines of clean code
- Add new categories in seconds
- Handle unlimited classifications (not limited to 64)
- Code that’s actually readable
- Professional, maintainable solution
✅ Time Saved:
- Writing formula: 10 min → 3 min
- Updating formula: 5 min → 10 seconds
- Debugging formula: 15 min → 1 min
✅ Sanity Points:
- Excel: -100 (nested IF trauma)
- Python: +100 (elegant solution)
What’s Next?
Now that you can classify data elegantly, check out:
- Create pivot tables with classifications → Coming soon
- Merge with mapping libraries → Coming soon
- Build multi-level classifications → Coming soon
Your Turn!
💬 What’s the worst nested IF formula you’ve seen?
Share in the comments—let’s see who has the most parentheses! 🏆
🤔 Need help converting your specific formula?
Post it below (remove sensitive data) and I’ll help you translate it to Python!
Tags: #Python #Pandas #Excel #Functions #BusinessLogic #Automation #DataMapping #FinancialAnalysis
Part of the “From Excel Hell to Python Heaven” series. Subscribe for more Excel-killing tips!